PERGAMON International Journal of Solids and Structures 36 (1999) 2613-2631

Solutions for transversely isotropic piezoelectric infinite
body, semi-infinite body and bimaterial infinite body subjected
to uniform ring loading and charge
Ding Haojiang**, Chi Yuwei®, Guo Fenglin®

* Department of Civil Engineering, Zhejiang University, Hangzhou 310027, P.R. China
® Department of Geotechnical Engineering, Tongji University, Shanghai 200092, P.R. China

Received 19 December 1997 ; in revised form 16 March 1998

Abstract

Based on the fundamental solutions for transversely isotropic piezoelectric materials, the fundamental
solutions of axisymmetric problems are derived by integration and explicit expressions for three possible
cases of different characteristic roots and multiple roots are all presented. In the case of s, # s, # 53 # 51,
based on the Green’s functions for semi-infinite piezoelectric body and bimaterial infinite piezoelectric body,
the Green’s functions for axisymmetric problems of semi-infinite body and bimaterial infinite body are
obtained. Taking PZT-4 as an example, numerical computations are conducted by use of the fundamental
solutions to axisymmetric problems. Comparison of the calculated results with those of FEM shows good
agreement between them. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of axisymmetric stress analysis of body of revolution is of great significance in
engineering. Kermanidis (1975) and Cruse et al. (1977) studied the Boundary Integral Equation
approach for axisymmetric problem of bodies of revolution. Rizzo and Shippy (1979) and Mayr
et al. (1980) successfully extended this method to axisymmetric bodies with arbitrary boundary
conditions. Brebbia et al. (1984) gave a detailed account of problems relating to application of
BEM to axisymmetric bodies. For transversely isotropic materials, Hanson and Yang Wang (1997)
recently gave solutions for ring loading in an infnite body and a semi-infinite body, including axial,
radial and tangential loads. As for transversely isotropic piezoelectric materials, Ding et al. (1996)
and Dunn and Wienecke (1996) gave three-dimensional fundamental solutions using different
methods. Ding et al. (1997) obtained Green’s function solutions for infinite, semi-infinite and
bimaterial infinite bodies in all three cases of characteristic roots s,.
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In this paper, the fundamental solutions of axisymmetric problems are derived by integration
methods based on fundamental solutions for transversely isotropic piezoelectric media, and explicit
expressions are presented for three cases of different characteristic roots and multiple roots. For
the case of s, # s, # 53 # 5,, Green’s functions for axisymmetric problems of semi-infinite body
and bimaterial infinite body are obtained by integration method based on the Green’s functions
for semi-infinite piezoelectric body and bimaterial infinite piezoelectric body. Taking PZT-4 as an
example, numerical computations are conducted by use of the fundamental solutions. Comparison
of the calculated results with those of FEM shows good agreement between them. The notions in
Ding et al. (1997) are widely adopted in the paper.

2. Solutions for uniform ring loading in an infinite body

Assume that xy plane is the isotropic plane. The coordinate system is shown in Fig. 1. Meanwhile,
a cylindrical coordinate system (r, 0, z) is taken to coincide with the Cartesian coordinate system
in z axis and the origin. Uniform ring loading and line charge density are applied at the ring r = r,
on the plane z = 0. Elastic and electric fields caused by the loading and charge at an arbitrary
point are intended to obtain. Without loss of generality, we assume that coordinates of the field
point B are B(r,0, z), and coordinates of an arbitrary source point 4 in cylindrical and Cartesian
coordinates are (r,, 0,0) and (r,cos 0, rysin 0, 0), respectively. In the following, attention should be
paid to that in Ding et al. (1997) the source point is (0, 0, /), thus the vector from source point to
field point (x,y,z) is (x,y,z—h). Here, the vector AB is (r—rycos0, —rysin6,z) as shown in
Fig. 1.

2.1. Sy # Sy # 83 # S,

(1) Solution for uniform ring loading in z direction with line density of P, and uniform charge
with line density of Q,.

Assume that uniform ring loading in z direction with line density of P, and uniform charge with
line density of Q, are applied at a ring passing through point A. Consider an infinitesimal arc
element r,d0 at point A, then the point force in z direction and point charge acting on the arc
element are Pr,d0 and Qy,d0, respectively. From eqns (12)—(14) of Ding et al. (1997), dis-
placements at point B can be obtained as follows::

Lz
~ B
Yy
A
O
X

Fig. 1. Coordinate systems for axisymmetric problems.
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where w, is the displacement component in z directions, w, w, is electric potential ¢ and
A, = P, AT+ 0,42 with A7 and A? being constants. Constants 47 and A2 can be determined by
eqn (26) of Ding et al. (1997), in which 4, = PAY +0A4¢, and

R = ./(r—rocos0)’ +rysin’ 0+s72°, To=R+slzl, (i=0,1,2,3) 4)

Using eqns (C5)—(C8) in Appendix C, eqn (1) can be rewritten to the following form :

3 A, [1 rr—rk z; (r* —rd)z
du, = — — —_— ~ — do
o ,-; r [2 sign(2) 31gn(z) —bPcos 2R (—bcosO)R,

Then, integrating the above expression with respect to 6 in the interval of 0 ~ 27 and resorting to
definite integral expressions eqns (C1)—(C4) of Appendix C, the representation of u, can be readily

obtained by integration. Integrals in eqns (2) and (3) are easy to integrate. Thus, we obtain
displacements and electric potential as follows::

i :|7 Mg = 0
4oc,mA o

= ¥ KK 5)

3 2A4,r0z;
U, = — K(k;)
= L

In the process of integration leading to eqn (5), the result X}, 4, = 0 has been used since it is
obvious that X}, A7 = 0 and Z;_, 42 = 0 hold by eqn (26) of Ding et al. (1997).

It is not difficult to derive the expressions of strains, electric field strengths, stresses and electric
displacements from eqn (5).

3 2Airoz; [ 2 1 —
5= 3 T 2 B+ — K(k) + ——TI(d, k)
=1 9i r (r4ro)r’

Iy

I1(d, k
[ (”( 0>2( )}

5= z W L )~k

-5
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3 49, Az,
o= — Y O
i=1 l,g; (1)
3 2a),mAr fi
= 3 °[g E(k;)— K(k)} (6)

where m =1, 2, 0y, 05, 7,; and 7,, stand for ., D., 7,. and D,, respectively. For ¢, w,, and 3,,
(i=1,2,3), see eqn (7) of Ding et al. (1997).
(2) Solution for uniform ring loading in r direction with line density of 7.

Consider an infinitesimal arc element r,d6 at point A. Then, the arc element is subjected to force
in x direction Ty,cos0dfO and force in y direction 7y,sinfdf. Obviously, the displacement
functions of point B can be obtained by superimposing the displacement functions of point force
solution for force in x direction on those for force in y direction.

In Ding et al. (1997), eqn (35) gives the displacement functions for a point force T acting along
x direction.

D,y D;x

Wi

=, = N .=1,2,3 7
Vo= Ro+sol7] Rasolz” U ) @

Similarly, the displacement functions for a point force T acting in y direction are :

Dyx D,y

=" y=—" (i=1,23 8
lpO R0+S0|Z|’ lpz Ri+Si|Z| ] (l L) ) ( )

where D, have been given by eqn (50) of Ding et al. (1997). Denote T,D,/T (i = 0, 1,2, 3) as D,. By
use of superposition principle and eqns (7) and (8), we have
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gy = — Dyrr, sin 0d0, ay, — D;(rr, c;s 0—r}) q )
0 i

Integrating the equations above with respect to 0 in the interval 0 ~ 2x leads to the expressions of
displacement functions:

lﬂ0=0

2

wf=za{—wu—«@n@—mnmﬂ—wEw»+V‘”%Kw»+“u””ﬁru¢ko} (10)

i (r+r)l;

Substituting eqn (10) into eqn (D1) and using eqns (B4)—(B7) give the expressions of displacements
and electric potential.

w=-y

uy =0
3 20;,D.z;
Wy = )

i“i Fr—ry
TN (k) — - 1
P [worﬂ H} (1)

Furthermore, the expressions of strains, electric field strengths, tresses and electric displacements
can be obtained :

[g E(k;) — (r +27) K(k; )}

-2 [wm%?mm}

5, = : 2(OC’I+S)DZ|:H E(k;))— K(k)}
i=1 Lir 9i

20, D;s,

SZ:i; . [g E(k)— K(k)}

12Dl Zi

E=Y LE%FH@}

20, Dy,
= [g E(k)— K(k)}

=
I
Mw

i

3 2D, 3 2¢.D;
O, _(Cll_clz)z |: E(k;) — (V0+ZZ)K(k):| ; |:g E(k;) — K(k)}

Y 1)
aez—(cn—m)_;l_r2 |:pz-;0rE(k) nK(k)} :Z [gE(k) K(k)}

1
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3 2%,.D; [ o;

T = —i 2onb2z, [” E(ki)—K(ki)} (12)

=1 Lir g

(3) Solution for uniform ring loading in 6 direction with line density of S,.

Consider an infinitesimal arc element r,d6f at point 4. The forces acting on the element are
—Srosin 0 d0 in x direction and S, cos 0 df in y direction. By means of the superposition principle
the displacement functions at point B can be obtained from eqns (7) and (8).

Dy (rrycos0—r?

Dirrysin0
T, [

T;

dyy = — do, dy, = — do (13)
where D, = S,D,/T (i =0,1,2,3).

Integrating the expressions above with respect to 0 in the interval of 0 ~ 27 gives the displacement
functions as follows:

- ) 2 —r

Vo = 2D, {n[l —sign(r—ro)lslz| +1 E(ko) =~ K(ko)
0

(r—ro)zo T1(d, ko)

(r+ro)ly e
v, =0, (i=1,23) (14)

From eqn (D1), we get the expressions of displacements and electric potential.
u. = Oa Uy = 1 r [ZOE(kO)_n()K(kO)]’ Wy = 0. (15)
0

In Ding et al. (1997), B; in eqn (B3) and C; in eqn (B7) have the following forms:
B, = PBf+0B? and C;=PC’+QC?. Correspondingly, in what follows we have
B, = PBl'+Q,B? and C, = P,CF+Q,C?, as well as E,= T\.E/T, E, = S,E,/T, G,= T,G,/T and
G, = S,G,/T, etc.

22 Sq # S, = 83

By use of the displacement functions given in Appendix B of Ding et al. (1997) and eqn (A6),
the general solutions for displacements in the case of multiple roots given in Appendix A, applying
the same procedure as explained in Section 2.1 leads to the fundamental solutions of axisymmetric
problems.

(1) Solution for uniform ring loading in z direction with line density of P, and uniform charge
with line density of Q,.
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2B, 2B
——y [ } i [f L E(k;) - K(k»}
o
Uy = 0
2 4o, B; 4oy, By1y23 4oy,,Bst
W,, = OimDil'o K(k,)— OomD3ToZ; E(k2)+ OlgmD3ly K(kz) (16)
i=1 li 12M2 12
(2) Solution for uniform ring loading in r direction with line density of 7.
2 2F, 2E;z3
w o= = 3 IR EG) Kk = | R )~ K(k)
i=1 *ti 2
Uy = 0
2 E 2005, F
- 3 A )= k) [ 2 ) Kk |
P 2 9>
2004 E —
+ W[K(kz)— L )} (17)
[, r+r

(3) Solution for ring loading in 6 direction line density of S,.

The expressions of displacement are the same as those in the case of different roots except for
replacing D, with £,

23 Sl = Sz = S3

(1) solution for ring loading in z direction with line density of P, and uniform charge with line
density of Q,.

2C,ryz 2C,r
ur - _ 17041 K(kl) . + 2 () 1 fl E(k ) K(k )
L Lir
2C 3 —70,r?
_ e [” - E(kl)—fllqkl)]
lig.r 91
Uy = 0
W= 4(01,C, + 014, Cy + 15, C3)rg K(k,)— 4(01,,Cy + 2014, C3)ro 27 Ek,)
11 llgl
4o, Cirozt [ 11 =423 (rg + 21
40, Carozi |:f| 1 (15 I)E(kl)—i—ZfK(kl)} (18)
1191 91
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(2) Solution for ring loading in r direction with line density of 7.

2G,z
= = VB —m KGO+ = [ E(ky)— Kk, )J
LA A
2G5z} . 2
Lgir o 191 (ny+27) =225 (0 + 47 rg) 1 E(k ) — (179 — n,z1)g, K(k,)1}
191
u0 = 0
W, = — 2(O(lmél _0(4/1}G_2—O(5mG_3)Zl |:K(k1)_ F—r, | i|
: r+rg

2(OC]mGZ + 2a4mG )Zl
l

[ E(k,)— K(k, )}

20‘2mG321

g — 5 [(ig) —2ni+q) E(k,) + 0,9, K(k))] (19)

(3) Solution for ring loading in 6 direction with line density of S,.

The expressions of displacements are the same as those in the case of mutually different roots
except replacing D, with G,.

Finally, it should be noted that when the displacement functions for axisymmetric problems are
obtained first, the displacements and electric potential can be derived from displacement functions
by using eqns (D2) and (D3) of Appendix D as in the case of eqns (16-19).

3. Solutions for uniform ring loading in a bimaterial infinite body

Ding et al. (1997) also gave Green’s functions for a bimaterial infinite body in three possible
cases of characteristic roots s;, Assume that uniform ring loading acts on the plane z = / in the
bimaterial infinite body. Applying the same procedure as that for homogeneous infinite body,
again, the solutions for uniform ring loading in a bimaterial infinite body can be obtained by
integration. In what follows, the solution for the case of s, # s, # 53 # 5, will be presented.

(1) Solution for ring loading in the z direction with line density of P, and uniform charge with line
density of Q,.
In the region z > 0, we have

3 240z, _ r—ro _ 3 roz,,
u; = l,,-V |: ii r+r0 s Vg :| i:Z ; ( s l_/)
Uy = 0
3 40(1‘/11Alr i~ 3 3 4OCim"4_i'r
W= Y KR+ Y Y KKy (20a)
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/7
,;,1, ug =0

i Ly (20b)

In the region z < 0, we have:

i ; 24 roz,, [K(k >

\IMw

(2) Solution for ring loading in r direction with line density of 7.
In the region z > 0, we have:

3 2D, _ _ 3003
= _‘:Zlii'r[ilz'iE(kii)_ﬁiiK(kii)]_A:Z ; E(k,j) n,;K(k;)]

s Vi

2aimDi/’ZI/

+X ) T |:K(kz/) -

s ij):| (21a)
In the region z < 0, we have::
2

w=-yy

4
i=1j=1 lljr

=~

ij

(12 E(k}) —n,K(K})], 1y =0

33 20, Lz
I L
i=1j=

i } (21b)

(3) Solution for ring loading in 6 direction with line density of S,.
In the region z > 0, we have:

u, =0, w,=0

1o E(koo) — nooK(koo>]+ 0 Ekoo) =00 K(koo)] (22a)

In the region z < 0, we have:
u, =0, w,=0

2L2)0

Uy =

- [0 E(ko0) = oo K(koo)] (22b)

In the derivation of eqns (20)—(22), we have made use of the displacement and electric potential
expressions eqns (28) and (30) as well as expressions of displacement function eqns (35), (51) and
(53) in Ding et al. (1997). In addition, eqns (31)—(34) are used to solve for 4;; and A4;;, and eqns
(55)-(60) for D;; and Lj;. Obviously, these constants can be rewritten to the following forms:
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Ay = PA[+QAS, A, =PA[+QAS, D, =TD] and L, = TL']. Therefore, those constants
appearing in eqns (20)—(22) are all of the following forms: A, = P,A}+Q,AS,
Ay =PAL+0QA¢ D;=TD}, L;=TL}, D;,=SD}and Lj; = S,L’};. For those solutions in
which displacement functions are obtained first, displacements and electric potential can be cal-
culated by eqn (D1) of Appendix D correspondingly.

4. Solutions for uniform ring loading in semi-infinite body

Assume that uniform ring loading acts on the plane z = / in a semi-infinite body. The solutions
for displacements and electric potential to the extended Mindlin problem in the case of
s) # 8, # 53 # 5, have the forms of eqns (20a), (21a) and (22a). Yet, coefficients 4/, AZ and D] in
A, D;jand D;; should be determined by eqns (61) and (62) of Ding et al. (1997).

5. Numerical examples

Taking PZT-4 as an example, some quantities of eqns (5), (6), (11) and (12) are calculated, and
comparison of the calculated results with those of FEM is made. Material constants and charac-
teristic roots of piezoelectric material PZT-4 are listed in Table 1. Take a cylinder with square
meridional plane of side length 1000 m as the region to be studied as shown in Fig. 2. Halves of
unit axial force (1 N/m), unit charge density (1 C/m) and unit radial force (1 N/m) are applied at
the ring that is 10 m away from the z axis. The plane of OF is the plane of symmetry. The axial
displacement, radial displacement and electric potential are set to be zero at the outer boundary
DE and CD when FEM calculation is performed. Region 1 and region 2 are divided into 400
elements and 500 elements, respectively, which amount to 2801 nodes and 8403 degree-of-freedoms.
Isoparametric elements with eight nodes are adopted. Comparison of calculated results of certain
quantities on the plane z = 0 by FEM and those of fundamental solutions is listed in Figs 3-15,
where FSL stands for results of fundamental solutions and FEM for those of Finite Element
Method.

Table 1
Material constants of piezoelectric material PZT-4

Piezoelectric
Elastic constants constants Dielectric constants Characteristic
(N/m?) (C/m?) (C/Vm) roots
¢ = 13.9%x10" ey =52 g, =646x107"° s, = 1.203962
¢, =7.78 x 10" ey; = 15.1 £ = 5.62x107° s, = 1.069818
c; = 7.43x10" es=12.7 +1.997586 1
ey = 11.5x10" sy = 1.046767

Caq = 2.56x 10" —1.997586 1
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Fig. 2. FEM model.
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Fig. 3. w caused by axial force.
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Fig. 4. ¢ caused by axial force.

6. Conclusions

2623

(1) The axisymmetric fundamental solutions for transversely isotropic piezoelectric materials are
derived and solutions for all three possible cases of characteristic roots s; are explicitly given.
Comparison of the calculated results of the fundamental solutions with those of FEM shows
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Fig. 6. D, caused by axial force.
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Fig. 7. w caused by electric charge.

good agreement between them. In eqn (5), that is, the solution for ring loading in z direction
with line density of P, and uniform charge of line density Q, in the case of s, # s, # 53 # 51,
assume that 2zr, P, = P, 2nr,Q, = Q, and let r, approach zero while keeping P and Q constant,
then eqn (5) will be reduced to eqns (12)—(14) of Ding et al. (1997) that are expressed in
cylindrical coordinates.

(2) For axisymmetric problems of transversely isotropic piezoelectric semi-infinite body and bima-
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Fig. 8. ¢ caused by electric charge.
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Fig. 10. D, caused by electric charge.

terial infinite body, Green’s functions in the case of s, # s, # 53 # 5, are present. Green’s
functions corresponding to the cases of multiple characteristic roots s; can also be obtained by
integration from the related equations of Ding et al. (1997).

(3) Compared with the fundamental solutions for isotropy, the fundamental solutions given in
this paper involve not only elliptic integrals of first and second kind, but also elliptic integral
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of third kind, which also occurs in the problem of transversely isotropic elastic body (Hanson
and Yang Wang, 1997).

(4) Making full use of the results for the case of s, # s, # 53 # 5, can facilitate the solution of
Green’s functions in the cases of multiple roots because in the displacement functions for the
cases of multiple roots, terms different from those in the case of s, # 5, # 55 # 5, are, in
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fact, in direct proportion to partial derivatives of their corresponding original displacement
functions with respect to z. Therefore, the desired results can be readily obtained by proper
use of eqns (B4)—(B7) and eqns (D1)—(D3) in appendices, and complicated integration could
be obviated.

Appendix A : Notations

For convenience of reading, frequently used notations in the paper are listed as follows:

=5z 17 =0+r) +z;

fi=—r+ri+z gi=0—r)’+z
ki =2rroll; d= —4rry/(r+ry)?
n=r*+ry+z: o0, =r*—rj+z;

p=PE )R 4= 8R4+
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b* =drry ¢ =2(r*+rp)
hy =sh z;=sz
Z. = Zi_h

i ; Zy =zith

zy=zi—h, [=0+r))’+z;
I7=(r+r)) +z; I:=(+r)*+2;
Eii = 2%@ kzi/ = 2%/1@/

ki =2rroll, iy =141+

2 2 2 2 2 2
n,=r--+ro+z; n;=r+ro+z’;

Appendix B: Elliptical integrals and their differentiation formulas

(1) Three kinds of complete Legendre elliptic integrals

Complete elliptic integral of the first kind :

/2 dy
K(k) = _ Bl
® Jo 1 —k?*sin* y @

Complete elliptic integral of the second kind :

E(k) = JZ J1—ksin g dy (B2)

Complete elliptic integral of the third kind:

el = j (1+psin’ wdjm .
(2) Differentiation formulas

digc) _ Egc) - Kl(ck) ®5)

angi, K _ (kzli . LE_(/;; —H(p,k):| 56)
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oM(p, k) 1
o 2p(1+p)(K>+p)

[pE(k) — (p+k*)K(k) + (k* — p*)T1(p, k)] (B7)

Appendix C: Some definite integrals appearing in the fundamental solutions

First
(27 1 2n n
—df = = Cl
Jo ¢ —b*cosb [t —bt P =71} €1
(271 4
I, fjd@ = ZK(k,-) (€2
(27 1 4 2
—db = II(d, k) = —1I1(d. k,) (C3)
vO ((:2_b2 COS Q)Rl ll'(b2+c2) Z,»(I"-i-l"())z
(27
R.d0 = 4L,E(k)) (C4
JO
Then, note that
cos@_2nii zﬁ Cs)
R R p (
1 1
T: /n,—2rry cos0+s,|z|
2s;|z| 1 227
=+ =+ (Co)

c?—b*cos® R (*—b*cosO)R,

Accordingly, definite integrals 3" (cos 0 d0/R;) and f67(do/ T') can be calculated by using eqns (C1)—
(C4).
Finally, note that

cosO 25|z 2 ~ *1
T ety 7
r—rgcosf ro (1 1 ro [cos@ cosO
~ ~ = ~ — =~ |— ~ - ~ (C8)
R T; silzZl \R;  T; silzl \ R; T;

Equation (C8) can be decomposed using eqn (C7), which, in turn, can be decomposed by use of
eqns (C5) and (C6). Therefore, integrals [3"(cos0d0/T;) and [3" [(r—r,cos0) dO/R,T] can be
expressed by combinations of elliptic functions.
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Appendix D : General solution of axisymmetric problems in cylindrical coordinates

For convenience of reference, we transform three sets of general solution of three-dimensional
problem eqns (2), (A6) and (AS8) of Ding et al. (1997) into cylindrical coordinates and present the
following three sets of general solution of axisymmetric problems.

(1) sy # 8, #853# 5

3 alpi B alpo 3 B
w=2 5 =G =Tl =12 (D)
(2) 51 # 53 = 153
v - 2 a"b, e % " _%
A or or T or
2 alp
Win = Z %Lim +oc2n122 a +O(4m¢% (m = 152) (Dz)
(3) 51 =85 =s;
awl 81[’2 aw} awo
u, = or +z or +z 8razl Uy = ar
0 0 02 .
Wi = Oy 2 lp +O(1,,,Z| lp 4mlp2 +a2m I ws +2O(4,,ZZ| l# +a5mlp3’ (m: 1, 2) (D3)
0z 0z, 023 oz,
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