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Abstract

Based on the fundamental solutions for transversely isotropic piezoelectric materials\ the fundamental
solutions of axisymmetric problems are derived by integration and explicit expressions for three possible
cases of di}erent characteristic roots and multiple roots are all presented[ In the case of s0 � s1 � s2 � s0\
based on the Green|s functions for semi!in_nite piezoelectric body and bimaterial in_nite piezoelectric body\
the Green|s functions for axisymmetric problems of semi!in_nite body and bimaterial in_nite body are
obtained[ Taking PZT!3 as an example\ numerical computations are conducted by use of the fundamental
solutions to axisymmetric problems[ Comparison of the calculated results with those of FEM shows good
agreement between them[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The problem of axisymmetric stress analysis of body of revolution is of great signi_cance in
engineering[ Kermanidis "0864# and Cruse et al[ "0866# studied the Boundary Integral Equation
approach for axisymmetric problem of bodies of revolution[ Rizzo and Shippy "0868# and Mayr
et al[ "0879# successfully extended this method to axisymmetric bodies with arbitrary boundary
conditions[ Brebbia et al[ "0873# gave a detailed account of problems relating to application of
BEM to axisymmetric bodies[ For transversely isotropic materials\ Hanson and Yang Wang "0886#
recently gave solutions for ring loading in an infnite body and a semi!in_nite body\ including axial\
radial and tangential loads[ As for transversely isotropic piezoelectric materials\ Ding et al[ "0885#
and Dunn and Wienecke "0885# gave three!dimensional fundamental solutions using di}erent
methods[ Ding et al[ "0886# obtained Green|s function solutions for in_nite\ semi!in_nite and
bimaterial in_nite bodies in all three cases of characteristic roots si[
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In this paper\ the fundamental solutions of axisymmetric problems are derived by integration
methods based on fundamental solutions for transversely isotropic piezoelectric media\ and explicit
expressions are presented for three cases of di}erent characteristic roots and multiple roots[ For
the case of s0 � s1 � s2 � s0\ Green|s functions for axisymmetric problems of semi!in_nite body
and bimaterial in_nite body are obtained by integration method based on the Green|s functions
for semi!in_nite piezoelectric body and bimaterial in_nite piezoelectric body[ Taking PZT!3 as an
example\ numerical computations are conducted by use of the fundamental solutions[ Comparison
of the calculated results with those of FEM shows good agreement between them[ The notions in
Ding et al[ "0886# are widely adopted in the paper[

1[ Solutions for uniform ring loading in an in_nite body

Assume that xy plane is the isotropic plane[ The coordinate system is shown in Fig[ 0[ Meanwhile\
a cylindrical coordinate system "r\ u\ z# is taken to coincide with the Cartesian coordinate system
in z axis and the origin[ Uniform ring loading and line charge density are applied at the ring r � r9

on the plane z � 9[ Elastic and electric _elds caused by the loading and charge at an arbitrary
point are intended to obtain[ Without loss of generality\ we assume that coordinates of the _eld
point B are B"r\ 9\ z#\ and coordinates of an arbitrary source point A in cylindrical and Cartesian
coordinates are "r9\ u\ 9# and "r9 cos u\ r9 sin u\ 9#\ respectively[ In the following\ attention should be
paid to that in Ding et al[ "0886# the source point is "9\ 9\ h#\ thus the vector from source point to
_eld point "x\ y\ z# is "x\ y\ z−h#[ Here\ the vector AB is "r−r9 cos u\ −r9 sin u\ z# as shown in
Fig[ 0[

1[0[ s0 � s1 � s2 � s0

"0# Solution for uniform ring loading in z direction with line density of Pl and uniform charge
with line density of Ql[

Assume that uniform ring loading in z direction with line density of Pl and uniform charge with
line density of Ql are applied at a ring passing through point A[ Consider an in_nitesimal arc
element r9 du at point A\ then the point force in z direction and point charge acting on the arc
element are Plr9 du and Qlr9 du\ respectively[ From eqns "01#Ð"03# of Ding et al[ "0886#\ dis!
placements at point B can be obtained as follows ]

Fig[ 0[ Coordinate systems for axisymmetric problems[
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where w0 is the displacement component in z directions\ w\ w1 is electric potential f and
AÞi � PlA
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i and AQ
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Using eqns "C4#Ð"C7# in Appendix C\ eqn "0# can be rewritten to the following form ]
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Then\ integrating the above expression with respect to u in the interval of 9 ½ 1p and resorting to
de_nite integral expressions eqns "C0#Ð"C3# of Appendix C\ the representation of ur can be readily
obtained by integration[ Integrals in eqns "1# and "2# are easy to integrate[ Thus\ we obtain
displacements and electric potential as follows ]
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In the process of integration leading to eqn "4#\ the result S2
i�0 AÞi � 9 has been used since it is

obvious that S2
i�0 AP

i � 9 and S2
i�0 AQ

i � 9 hold by eqn "15# of Ding et al[ "0886#[
It is not di.cult to derive the expressions of strains\ electric _eld strengths\ stresses and electric

displacements from eqn "4#[
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where m � 0\ 1\ s0\ s1\ tr0 and tr1 stand for sz\ Dz\ trz and Dr\ respectively[ For ji\ vim and qim

"i � 0\ 1\ 2#\ see eqn "6# of Ding et al[ "0886#[
"1# Solution for uniform ring loading in r direction with line density of Tl[

Consider an in_nitesimal arc element r9 du at point A[ Then\ the arc element is subjected to force
in x direction Tlr9 cos u du and force in y direction Tlr9 sin u du[ Obviously\ the displacement
functions of point B can be obtained by superimposing the displacement functions of point force
solution for force in x direction on those for force in y direction[

In Ding et al[ "0886#\ eqn "24# gives the displacement functions for a point force T acting along
x direction[

c9 �
D9y

R9¦s9 =z=
\ ci �

Dix
Ri¦s9 =z=

\ "i � 0\ 1\ 2# "6#

Similarly\ the displacement functions for a point force T acting in y direction are ]
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Diy
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\ "i � 0\ 1\ 2# "7#

where Di have been given by eqn "49# of Ding et al[ "0886#[ Denote TlDi:T "i � 9\ 0\ 1\ 2# as DÞi[ By
use of superposition principle and eqns "6# and "7#\ we have
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Integrating the equations above with respect to u in the interval 9 ½ 1p leads to the expressions of
displacement functions ]
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Substituting eqn "09# into eqn "D0# and using eqns "B3#Ð"B6# give the expressions of displacements
and electric potential[
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Furthermore\ the expressions of strains\ electric _eld strengths\ tresses and electric displacements
can be obtained ]
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"2# Solution for uniform ring loading in u direction with line density of Sl[
Consider an in_nitesimal arc element r9 du at point A[ The forces acting on the element are

−Slr9 sin u du in x direction and Slr9 cos u du in y direction[ By means of the superposition principle
the displacement functions at point B can be obtained from eqns "6# and "7#[
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where D	i � SlDi:T "i � 9\ 0\ 1\ 2#[
Integrating the expressions above with respect to u in the interval of 9 ½ 1p gives the displacement

functions as follows ]
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From eqn "D0#\ we get the expressions of displacements and electric potential[
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In Ding et al[ "0886#\ Bi in eqn "B2# and Ci in eqn "B6# have the following forms ]
Bi � PBP

i ¦QBQ
i and Ci � PCP

i ¦QCQ
i [ Correspondingly\ in what follows we have

BÞi � PlB
P
i ¦QlB

Q
i and CÞi � PlC
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Q
i \ as well as EÞi � TlEi:T\ E	i � SlEi:T\ GÞi � TlGi:T and

G	i � SlGi:T\ etc[

1[1[ s0 � s1 � s2

By use of the displacement functions given in Appendix B of Ding et al[ "0886# and eqn "A5#\
the general solutions for displacements in the case of multiple roots given in Appendix A\ applying
the same procedure as explained in Section 1[0 leads to the fundamental solutions of axisymmetric
problems[

"0# Solution for uniform ring loading in z direction with line density of Pl and uniform charge
with line density of Ql[
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"1# Solution for uniform ring loading in r direction with line density of Tl[
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"2# Solution for ring loading in u direction line density of Sl[

The expressions of displacement are the same as those in the case of di}erent roots except for
replacing D	9 with E	9[

1[2[ s0 � s1 � s2

"0# solution for ring loading in z direction with line density of Pl and uniform charge with line
density of Ql[
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"1# Solution for ring loading in r direction with line density of Tl[
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"2# Solution for ring loading in u direction with line density of Sl[

The expressions of displacements are the same as those in the case of mutually di}erent roots
except replacing D	9 with G	9[

Finally\ it should be noted that when the displacement functions for axisymmetric problems are
obtained _rst\ the displacements and electric potential can be derived from displacement functions
by using eqns "D1# and "D2# of Appendix D as in the case of eqns "05Ð08#[

2[ Solutions for uniform ring loading in a bimaterial in_nite body

Ding et al[ "0886# also gave Green|s functions for a bimaterial in_nite body in three possible
cases of characteristic roots si[ Assume that uniform ring loading acts on the plane z � h in the
bimaterial in_nite body[ Applying the same procedure as that for homogeneous in_nite body\
again\ the solutions for uniform ring loading in a bimaterial in_nite body can be obtained by
integration[ In what follows\ the solution for the case of s0 � s1 � s2 � s0 will be presented[

"0# Solution for ring loading in the z direction with line density of Pl and uniform charge with line
density of Ql[
In the region z − 9\ we have
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In the region z ¾ 9\ we have ]

ur � s
2

i�0

s
2

j�0

1AÞ?ijr9z?ij
l?ijr $K"k?ij#¦

r−r9

r¦r9

P"d\ k?ij#% \ uu � 9

wm � − s
2

i�0

s
2

j�0

3a?imAÞ?ijr9

l?ij
K"k?ij# "19b#

"1# Solution for ring loading in r direction with line density of Tl[
In the region z − 9\ we have ]
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In the region z ¾ 9\ we have ]
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"2# Solution for ring loading in u direction with line density of Sl[
In the region z − 9\ we have ]
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In the region z ¾ 9\ we have ]
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In the derivation of eqns "19#Ð"11#\ we have made use of the displacement and electric potential
expressions eqns "17# and "29# as well as expressions of displacement function eqns "24#\ "40# and
"42# in Ding et al[ "0886#[ In addition\ eqns "20#Ð"23# are used to solve for Aij and A?ij\ and eqns
"44#Ð"59# for Dij and L?ij[ Obviously\ these constants can be rewritten to the following forms ]
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Aij � PAP
ij¦QAQ

ij \ A?ij � PA?Pij¦QA?Qij \ Dij � TDT
ij and L?ij � TL?Tij[ Therefore\ those constants

appearing in eqns "19#Ð"11# are all of the following forms ] AÞij � PlA
P
ij¦QlA

Q
ij \

AÞ?ij � PlA?Pij¦QlA?Qij \ DÞij � TlD
T
ij\ LÞ?ij � TlL?Tij\ D	ij � SlD

T
ij and L	?ij � SlL?Tij[ For those solutions in

which displacement functions are obtained _rst\ displacements and electric potential can be cal!
culated by eqn "D0# of Appendix D correspondingly[

3[ Solutions for uniform ring loading in semi!in_nite body

Assume that uniform ring loading acts on the plane z � h in a semi!in_nite body[ The solutions
for displacements and electric potential to the extended Mindlin problem in the case of
s0 � s1 � s2 � s0 have the forms of eqns "19a#\ "10a# and "11a#[ Yet\ coe.cients AP

ij\ AQ
ij and DT

ij in
AÞij\ DÞij and D	ij should be determined by eqns "50# and "51# of Ding et al[ "0886#[

4[ Numerical examples

Taking PZT!3 as an example\ some quantities of eqns "4#\ "5#\ "00# and "01# are calculated\ and
comparison of the calculated results with those of FEM is made[ Material constants and charac!
teristic roots of piezoelectric material PZT!3 are listed in Table 0[ Take a cylinder with square
meridional plane of side length 0999 m as the region to be studied as shown in Fig[ 1[ Halves of
unit axial force "0 N:m#\ unit charge density "0 C:m# and unit radial force "0 N:m# are applied at
the ring that is 09 m away from the z axis[ The plane of OE is the plane of symmetry[ The axial
displacement\ radial displacement and electric potential are set to be zero at the outer boundary
DE and CD when FEM calculation is performed[ Region 0 and region 1 are divided into 399
elements and 499 elements\ respectively\ which amount to 1790 nodes and 7392 degree!of!freedoms[
Isoparametric elements with eight nodes are adopted[ Comparison of calculated results of certain
quantities on the plane z � 9 by FEM and those of fundamental solutions is listed in Figs 2Ð04\
where FSL stands for results of fundamental solutions and FEM for those of Finite Element
Method[

Table 0
Material constants of piezoelectric material PZT!3

Piezoelectric
Elastic constants constants Dielectric constants Characteristic
"N:m1# "C:m1# "C:Vm# roots

c00 � 02[8×0909 e20 � 4[1 o00 � 5[35×09−8 s0 � 0[192851
c01 � 6[67×0909 e22 � 04[0 o22 � 4[51×09−8 s1 � 0[958707
c02 � 6[32×0909 e04 � 01[6 ¦0[886475 I
c22 � 00[4×0909 s2 � 0[935656
c33 � 1[45×0909 −0[886475 I
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Fig[ 1[ FEM model[

Fig[ 2[ w caused by axial force[

Fig[ 3[ f caused by axial force[

5[ Conclusions

"0# The axisymmetric fundamental solutions for transversely isotropic piezoelectric materials are
derived and solutions for all three possible cases of characteristic roots si are explicitly given[
Comparison of the calculated results of the fundamental solutions with those of FEM shows
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Fig[ 4[ trz caused by axial force[

Fig[ 5[ Dr caused by axial force[

Fig[ 6[ w caused by electric charge[

good agreement between them[ In eqn "4#\ that is\ the solution for ring loading in z direction
with line density of Pl and uniform charge of line density Ql in the case of s0 � s1 � s2 � s0\
assume that 1pr9Pl � P\ 1pr9Ql � Q\ and let r9 approach zero while keeping P and Q constant\
then eqn "4# will be reduced to eqns "01#Ð"03# of Ding et al[ "0886# that are expressed in
cylindrical coordinates[

"1# For axisymmetric problems of transversely isotropic piezoelectric semi!in_nite body and bima!
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Fig[ 7[ f caused by electric charge[

Fig[ 8[ trz caused by electric charge[

Fig[ 09[ Dr caused by electric charge[

terial in_nite body\ Green|s functions in the case of s0 � s1 � s2 � s0 are present[ Green|s
functions corresponding to the cases of multiple characteristic roots si can also be obtained by
integration from the related equations of Ding et al[ "0886#[

"2# Compared with the fundamental solutions for isotropy\ the fundamental solutions given in
this paper involve not only elliptic integrals of _rst and second kind\ but also elliptic integral
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Fig[ 00[ ur caused by radial force[

Fig[ 01[ sr caused by radial force[

Fig[ 02[ su caused by radial force[

of third kind\ which also occurs in the problem of transversely isotropic elastic body "Hanson
and Yang Wang\ 0886#[

"3# Making full use of the results for the case of s0 � s1 � s2 � s0 can facilitate the solution of
Green|s functions in the cases of multiple roots because in the displacement functions for the
cases of multiple roots\ terms di}erent from those in the case of s0 � s1 � s2 � s0 are\ in
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Fig[ 03[ sz caused by radial force[

Fig[ 04[ Dz caused by radial force[

fact\ in direct proportion to partial derivatives of their corresponding original displacement
functions with respect to z[ Therefore\ the desired results can be readily obtained by proper
use of eqns "B3#Ð"B6# and eqns "D0#Ð"D2# in appendices\ and complicated integration could
be obviated[

Appendix A ] Notations

For convenience of reading\ frequently used notations in the paper are listed as follows ]

zi � siz l1
i �"r¦r9#1¦z1

j

fi � −r1¦r1
9¦z1

i `i �"r−r9#1¦z1
i

ki � 1zrr9:li d � −3rr9:"r¦r9#1

ni � r1¦r1
9¦z1

i oi � r1−r1
9¦z1

i

pi � r1"z1
i −r1

9#¦"r1
9¦z1

i #1 qi � 7r1
9"r1

9¦z1
i #
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b1 � 3rr9 c1 � 1"r1¦r1
9#

hi � sih z?i � s?izi

z¹ij � zi−hj zij � zi¦hj

z?ij � z?i−hj l¹1ij �"r¦r9#1¦z¹1
ij

l1
ij � "r¦r9#1¦z1

ij l?1ij �"r¦r9#1¦z?1ij

k¹ ij � 1zrr9:l¹ij kij � 1zrr9:lij

k?ij � 1zrr9:l?y n¹ij � r1¦r1
9¦z¹1

ij

nij � r1¦r1
9¦z1

ij n?ij � r1¦r1
9¦z?1ij

Appendix B ] Elliptical integrals and their differentiation formulas

"0# Three kinds of complete Legendre elliptic integrals

Complete elliptic integral of the _rst kind ]

K"k# � g
p:1

9

dc

z0−k1 sin1 c
"B0#

Complete elliptic integral of the second kind ]

E"k# � g
p:1

9

z0−k1 sin1 c dc "B1#

Complete elliptic integral of the third kind ]

P"r\ k# � g
p:1

9

dc

"0¦r sin1 c#z0−k1 sin1 c
"B2#

"1# Di}erentiation formulas

dK"k#
dk

�
E"k#

k"0−k1#
−

K"k#
k

"B3#

dE"k#
dk

�
E"k#

k
−

K"k#
k

"B4#

1P"r\ k#
1k

�
k

"k1¦r# $
E"k#

0−k1
−P"r\ k#% "B5#
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1P"r\ k#
1r

�
0

1r"0¦r#"k1¦r#
ðrE"k#−"r¦k1#K"k#¦"k1−r1#P"r\ k#Ł "B6#

Appendix C ] Some de_nite integrals appearing in the fundamental solutions

First

g
1p

9

0

c1−b1 cos u
du �

1p

zc3−b3
�

p

=r1−r1
9 =

"C0#

g
1p

9

0
R	i

du �
3
li
K"ki# "C1#

g
1p

9

0

"c1−b1 cos u#R	i

du �
3

li"b1¦c1#
P"d\ k# �

1

li"r¦r9#1
P"d\ ki# "C2#

g
1p

9

R	i du � 3liE"ki# "C3#

Then\ note that

cos u

R	i

�
1ni

b1

0
R	i

−
1

b1
R	i "C4#

0
T	i

�
0

zni−1rr9 cos u¦si =z=

� −
1si =z=

c1−b1 cos u
¦

0
R	

¦
1z1

i

"c1−b1 cos u#R	i

"C5#

Accordingly\ de_nite integrals Ð1p
9 "cos u du:R	i# and Ð1p

9 "du:T	i# can be calculated by using eqns "C0#Ð
"C3#[

Finally\ note that

cos u

T	i

�
1si =z=
b1

−
1

b1
R	i¦

c1

b1

0
T	i

"C6#

r−r9 cos u

R	iT	i

�
r

si =z= 0
0
R	i

−
0
T	i1−

r9

si =z= 0
cos u

R	i

−
cos u

T	i 1 "C7#

Equation "C7# can be decomposed using eqn "C6#\ which\ in turn\ can be decomposed by use of
eqns "C4# and "C5#[ Therefore\ integrals Ð1p

9 "cos u du:T	i# and Ð1p
9 ð"r−r9 cos u# du:R	iT	iŁ can be

expressed by combinations of elliptic functions[
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Appendix D ] General solution of axisymmetric problems in cylindrical coordinates

For convenience of reference\ we transform three sets of general solution of three!dimensional
problem eqns "1#\ "A5# and "A7# of Ding et al[ "0886# into cylindrical coordinates and present the
following three sets of general solution of axisymmetric problems[

"0# s0 � s1 � s2 � s0

ur � s
2

i�0

1ci

1r
\ uu �

1c9

1r
\ wm � s

2

i�0

aim

1ci

1zi

\ "m � 0\ 1# "D0#

"1# s0 � s1 � s2

ur � s
1

i�0

1ci

1r
¦z1

1c2

1r
\ uu �

1c9

1r

wm � s
1

i�0

aim

1ci

1zi

¦a1mz1

1c2

1z1

¦a3mc2\ "m � 0\ 1# "D1#

"2# s0 � s1 � s2

ur �
1c0

1r
¦z0

1c1

1r
¦z1

0

1c2

1r 1z0

\ uu �
1c9

1r

wm � a0m

1c0

1z0

¦a0mz0

1c1

1z0

¦a3mc1¦a1mz1
0

11c2

1z1
0

¦1a3mz0

1c2

1z0

¦a4mc2\ "m � 0\ 1# "D2#
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